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\ ABSTRACT
A/

A velocity propagation technique is described that deter-
mines velocity vectors at the points of a contour, based on the
velocities at the endpoints of .ne contour and the normal
components of velocity along the contour.
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1. Introduction

Image motion can be described by a velocity or optical
flow field V(x,y,t) which gives the direction and speed of
movement of each point (x,y) in an image at time t. A
variety of algorithms have been proposed for determining
this optical flow velocity field. One class of such algori-
thms is based on a simple linear relationship between spa-
tial and temporal intensity gradients [1,2,3]. These gra-
dients are related to the optical flow by the following
equation:

Iu + va +I.=0 (1.1)
or

vy = - L./|v1| (1.2)

where I, is the temporal intensity change at (x,y); I, and Iy
are the spatial intensity changes-along the x and y axes at
time t; |VI| is the magnitude of the spatial intensity gradi-
ent at that point (|VI| = /I§+I§ iV, is the normal compo-
nent of the velocity at that point (along the intensity gra-
dient); and u and v are the components of the velocity in the
x and y directions.

However, it is impossible to determine both u and v or

both Vi and Vt (where Vt

single constraint of =2q (1.1) or eq (1.2). So certain further

assumptions about the organization of the velocity field have

to be made. Horn and Schunck [3], for example, proposed the

is the tangential component) from the
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assumption that the velocity varies smoothly. However, along
boundaries between objects moving with different velocities,
the resulting velocity field is unreliable, because this
smoothness assumption becomes invalid.

A similar problem (the so-called aperture problem) has

been studied by Batali and Ullman [4] in connection with de-

tecting motion along image contours (zero-crossings of
Laplacians in their work) . The aperture problem is that

if motion is detected by an element which is small compared
to the overall contour, then the only motion information that
one can obtain is the component perpendicular to the local

orientation of the contour. Motion along the contour cannot be

determined. They suggeét that in the case of translatioh, the
overall motion can be recovered by combining the local motion
constraints. Their method appears to rely heavily on the
assumption that the motion is a simple translation in the
image plane.

Yachida [5] proposed an iterative scheme for propagating
the velocity from some prominent points with given initial
velocity estimates. This scheme was also based on the smooth-
ness assumption of the velocity field.

In this paper we present a local constraint between the
velocity vecf.ors at the twoends of a small line segment.

This constraint is based on the assumption that all

motions are rigid, and it is used to derive a
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propagation procedure which can assign velocity vectors to :}
-—.—.-—4
all points on an image contour, based on the velocity vec- Co

tors at the endpoints of the contour, and on the normal com-

ponents of the velocity vectors along the contour. Since
the method does not combine information across an edge, it
should succeed in just those cases where a method such as

that of Horn and Schunk ([3] would have difficulty.
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= 2. Theory
:’ 2.1 The local constraint and the propagation formula

Suppose the velocity vectors go,yn at the ends of a
contour AoAn are known (see Figure 1). Consider a small

line segment dS along the contour AjA,. Assuming that
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the motion is a rigid motion and is small relative to the
quantization grid and contour curvature, the component

VOS of Vo,

the parallel component Vis of the velocity V, at A

the motion at Ao, parallel to AOA1 must equal

v =V (2.1a)

or

- ds. (2.1b)
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where V0 and Vl are the velocity vectors at the two ends of

the line dS, and dS is the unit vector along dS, the vector
joining Ao to Al' Rewriting this local constraint (eq. 2.1lb)

into component form, we obtain

V0 +ds = (Vlnn + Vltt) - ds

H-d—S-"'V E'a-g (2.2)

\'

1ln 1t

where Vln and Vlt are the normal component and the tangential
component of the velocity vector V1 respectively, and n and
t are the unit vectors in the normal and tangent directions

of the contour at Al. From Figure 1, we see that

v =V sina + V

0s 1t 1n ©°s¢

. PIPRESPN- IV P LT W SR S s PRI W PP S S AU T T SO W S AP W PP PRI YU Sy




Thus, the tangential component is

Vie = Wos

where o is the angle between the unit vector dS and the

- V1n * cosa)/sina (2.3)

normal vector n at the point Al. We also have y=B8-o, where
8 is the angle between the x-axis and the normal vector n,
and y is the angle between the x-axis and the line segment 4S.

We can propagate the velocity along a contour using eq.(2.3),
because the first projection Vos is known after the previous
propagation and the normal component Vln can be computed by,
e.g., the methods discussed in [3] or [4]. A procedure simi-
lar to the one described in [3] was used for computing normal
velocity components in the experiments described in the follow-
ing section. Once Vln is computed, V1=V1eje can be obtained

because

v, = A2 (2.4)

1 1n*Vit

6 = B -~ arctan vlt/vln
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2.2 Error analysis and a correction technique

From eq. (2.3) the new estimate of the tangent component

\Y is based on the previous projection V.. and on the nor-

1t 0s
mal component vln at the current propagation point. Differ-

entiating this equation we obtain

Vi . V¢ av
1t = 3w, Vos * av

1
sina

.\ avlt
1n Ja
(Vln-VOScosu)

sinza

av av da

av

+ cota dVln + da (2.5)

0s

Note that the error in Vlt depends on the error in the previous
projection (dvos), the error in the normal component Vln at
the current propagation point (dvln), and the error in the
measurement of the angle o (da).

The result of these various errors is that when the pro-
pagation reaches A, the velocity vector attributed to Al
by the propagation procedure will differ from the velocity vec-
tor originally computed at An‘ Therefore, at the point An
we compute the error between the propagation velocity estimate

VA and the original velocity vector Vn:

If this error is less than some tolerance, then this propagation
procedure is stopped at point A otherwise a correction proce-
dure is applied. If we consider the errbr AVn-as having been
accumulated in the previous n steps, then the average velocity

error in one step is




Ve = Avn/n

so we have m-Ve as the velocity error at the mth step and we

propagate this velocity error step by step backward to
correct the estimated velocity vector at each point along

the same contour.
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3. Experiments

3.1 Implementation

We applied the propagation technique to three image sequen-
ces, two of which are displayed in Figure 2. In both sequences,
the object motion is in the image plane.

The propagation technique was implemented as follows:

1) Velocity vectors are first determined at a set of "corner"

points in the first frame by the technique described in [6].
These corner points are marked with crosses in Figures 2 and 6.

2) The velocity vector at the corner is propagated along
the contours that meet at the corner until a second
corner point is encountered. The contours are followed
by a very simple maximum gradient technique. A velocity
vector is not computed at every pixel on the contour,
but only at every kth pixel, to reduce the error in o.

3) when the terminating corner point is reached, the propa-
gation is stopped and the error velocity vector is com-
puted} If this error is greater than a preset tolerance,
then the error velocity vector is back-propagated along

the same contour.
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3.2 Results

The first example is a simple translation of a toy airplane
(see Figure 2a). In this simple case the comparison of the
velocity vectors before and after the correction processing
is shown in Table 3.1. From the first and third columns of
Table 3.1, it is clear that the errors are accumulated along
the propagation path, and after the correction the values of Vx
and Vy are very close to the accurate values (in this case,

they are -1.0).

The resulté of éhé propagation procedure might depend cri-
tically on the direction of propagation - i.e., Ao to An or
vice versa. Experimentally, this has not been a problem.

The results in Table 3.2 show the velocity vectors resulting
from a "top-down" versus "bottom-up" scan of one of the con-
tours in Figure 2a.

In the second case (Figure 2), motion consists of a trans-
lation and a rotation. The computed velocity vectors of the
whole airplane and of two major parts of the airplane are shown
in Figures 3,4, and 5, respectively.

Figure 6 shows a moving tool, and Figure 7 shows the velo-

city vectors along the main contour of this tool.
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4. conclusion 'A)s

!! S The"veioeity‘propagatéen-techniqgfjdescribed in this

NP
. e

papergééh; at least, for simple motions, reliably determine

motion vectors along image contours. Although the propaga-

\J

tion procedure was implemented as a sequential procedure
which traces out contours, it is important to note that the

process is not inherently sequential and can be formulated

as a parallel process operating on a network of image contours.
The few examples contained in this paper all contained

a single moving object. 1In more complex scenes, one must

consider the problem of avoiding the propagation of motion

Fi vectors from one moving object to another. Also, the ability

of the technique to deal with more general motions was not

considered in this paper. All of these issues will be dealt

with in subsequent reports.
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The first

four columns headed x,y,vx,vy show results
for one direction of propagation, and the last
four columns show results for the other direc-

tion.
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Figure 1. The geometry of the propagation along a
contour in an image.
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Figure 2.

a b

Two frames of an airplane image.

Figure 6.

Two frames of a moving tool (a kni



Figure 3.
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Velocity field using the propagation technigque
along the contours of the moving airplane
shown in Figure 2.
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Figure 4.

The enlarged velocit
in Figure 2.
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Figure 5. The enlarged velocity field of the tail in
Figure 2.




Velocity field of the tool.
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